3-Coloring is NP-Complete

- 3-Coloring is in *NP*
 - Certificate: for each node a color from $\{1, 2, 3\}$
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v
- Hardness: We will show 3-SAT \leq_P 3-Coloring

Reduction Idea

Start with 3-SAT formula ϕ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{ϕ} such that G_{ϕ} is 3-colorable iff ϕ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{ϕ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or $\bar{v_i}$ gets the same color as True. Interpret this as a truth assignment to v_i
- For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph
 - gadget graph connects to nodes corresponding to a, b, c
 - needs to implement OR

OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction Outline

Example

$$\varphi = (u \vee \neg v \vee w) \wedge (v \vee x \vee \neg y)$$

Correctness of Reduction

- ϕ is satisfiable implies G_{ϕ} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

G_{ϕ} is 3-colorable implies ϕ is satisfiable

- if v_i is colored True then set x_i to be True, this is a legal truth assignment
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!